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In this paper we report exact results on thermostatic properties of the classical
n-vector model on the harmonic chain. This system is characterized by the Hamil-
tonian

H := Hy ({p}, {¢}) + H1 ({4}, {S}) (1)
where
1 N+1 mo. N
Ho({p}, {a)) = 5= D_ B+ 5w D (g~ aim)*, (2)
j=1 j=1

N
Hy ({g}, {S}) === D_W(€+gjs1 - 45)8; - Sjt1. (3)

j=1

Here H) is the Hamiltonian for the nearest-neighbor coupled harmonic chain which
consists of a one-dimensional lattice £Z with lattice constant £ > 0 and a set of N 41
point particles of mass m > 0 distributed along the Euclidean line R at positions
j€+¢;,7=1,2, ..., N +1. The momentum of the jth particle is denoted by p;
and the spring constant of this chain is mwi. We assume now that each particle
carries a set of internal rotational degrees of freedom which we collectively represent
by a classical spin, that is, by an n-component Euclidean unit vector S; € R™. The
Hamiltonian H; then models the simplest rotational invariant interaction between
the spins of two nearest neighbored particles. The interaction strength between two
spins is described by the real-valued even function W : z — W(z) and depends
on the actual interparticle distance as indicated in (3). In accordance with the
harmonic approximation it is sufficient to consider only the first two terms in a
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Taylor expansion of W,

W+ g1 — ;) = J +(¢41 — ), (4)

where J := W({) and n := W'(¥).

Within this approximation it is possible to decouple the vibrational and rota-
tional degrees of freedom by introducing shifted particle positions (cf. Refs. 1 and
2forn=1)

3=1

n )
Ty =q1, Zj=¢——=Y S -Sr41, 7=2,3,...,N+1. (5)
The result can be cast into the form
H =~ Hy ({p}, {z}) + Hepin ({S}H (6)

where we have introduced the pure spin—chain Hamiltonian

N

Hypin ({SH) := = ) (J8; - Sj41 + K(S; - Sj41)?) (7)
ji=1

with K := 7% /(2mw3). Since the thermal properties of the harmonic chain are well
known (see, for example, Ref. 3), we will consider only those of Hyy;y,.

Special cases of the Hamiltonian (7) have already been discussed in the literature.
For K = 0 it corresponds to Stanley’s n-vector model in one dimension.#® For J = 0
and n € {2, 3} a discussion is due to Vuillermot and Romerio.® As for the Ising case
(n = 1), we remark that the biquadratic term in (7) lowers the specific free energy
of the Ising chain simply by the constant K. However, even for n = 1 this term is
responsible for magnetostrictive effects of the full system (6), as discussed by Mattis
and Schultz.}? As an aside we mention that exactly known’ ground-state properties
of the quantum version of (7) for n = 3, é;—’ = 2h%1, J < 0 and K/|J| = —1/3 are
discussed” in relation with Haldane’s conjecture.

The basic thermostatic properties of the classical spin-chain Hamiltonian (7)
can be obtained from the free energy per spin in the macroscopic limit N — oo:

1

F(B):= -3 lim g 1 2(6), (®)

where the canonical partition function at temperature 1/8k (k: Boltzmann’s con-
stant) for the finite chain and n > 2 may be defined by the (N+1)(n—1)-dimensional
integral

2(8) = / as; - - [ dSn+1 exp{—BHypin ({S})} - ©
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For convenience we are using open boundary conditions. Furthermore, each of the
above dS stands for the usual surface measure on the (n—1)-dimensional unit sphere
in R™. We assume this measure to be normalized in the sense that {dS =1 and
recall its invariance under rotations

[asss)= [ as1665). (10)

This relation is valid for any integrable complex-valued function f and all orthogonal
n x n matrices g € SO(n). Of course, for n = 1 the integration [ dS stands for the
summation 1 Yo, ..

For the evaluation of the partition function (9) we note that the Hamiltonian
(7) can be rewritten as Hypin ({S}) = Ef;l V(8;, S;+1) where we have introduced

the spin-pair interaction energy
V(S,8):=-JS-§' - K(S-§'), (11)
which is SO(n)-invariant and exchange-invariant:
V(gS, ¢8')=V(8,8)=V(8,8), forallge SO(n). (12)

These properties can be used to rewrite the Hamiltonian (7) as Hepin ({S}) =
Zﬁ:l V(So, 9;S;4+1) where Sy is an arbitrary but fixed unit vector and the n x n
matrices g; are defined by ¢;8; := Sp. With the rotational invariance (10) the
partition function (9) can be reduced to a single dS-integration according to

Z(B) = / ds, f dS; e~FV (S0 ). f dSy e PV BeSva) = 2N (g (13)

where

XB) := [ dS exp{~5V (S0, 9)}. (14
Hence, the specific free energy (8) is given by
F(8) = ~(1/8)m)(8). (15)

What remains to be done is the integration (14). Choosing as the fixed vector
So the unit vector pointing towards the northpole, Sg = (0, ..., 0, 1), the function
V(Se, S), and therefore also exp{—8V(Sp, S)}, depends only on the polar angle
@ if S is parameterized in the usual (hyper-) spherical polar coordinates, because
then Sg S = cos#. Hence, the expression {14) can immediately be reduced to the
following one-dimensional integral (¢ := cos 8):

+1
F 2 ¢ t2 n—-3
A(B) = %_fldzeﬂ“ HKE) (1 _ 275 (16)

55



3504 G. Junker & H. Leschke

For K = 0 this integral can be expressed in terms of modified Bessel functions

n—2

MO =T/ (55) * Iaga(67), (17)

the well-known result for Stanley’s n-vector chain.* For K # 0 an expansion in
powers of 8J allows for an integration in terms of the confluent hypergeometric
function$:

oo 2r
A(B) = Z ]."(I‘n(72/—2|~)1("8;(/3)-1— ) 1F1 (r+ %57+ 2; BK) . (18)

This series can be summed® in terms of a generalized hypergeometric function of
two variables1?:11;

2
3 =ew (-G b (32 2w B2 (19)

Unfortunately, not much is known about this generalized hypergeometric function.
However, for the cases n = 1, 2 and 3, we can express A\(3) somewhat more explicitly
as follows:

A(B) = e®K cosh(8J), forn=1,
1
AB) = \FZ e U G PACTR forn =2,

, (20)
AB) = -ﬁJ”ﬂK [(1+ %) Fy (1 3. 8K (1+ %) )

2
+ (1—5%—) 1 Fy (-1- 3,[31((1—%(-)’ )] forn=3.

For n = 1 we have used formula 7.2.4.91 of Ref. 10 leading to the expected result. For
n = 2, in essence, we have expanded the integral (16) in powers of 8K . Forn = 3 the
integral (16) obviously is reducible to the sum of two error functions with complex
argument, which in turn can be expressed in terms of confluent hypergeometric
functions. Equations (19) and (20) in combination with (15) summarize the main
results we wish to report here. Appropriate derivatives of A(3) with respect to B
lead to the basic thermostatic quantities. For example, the specific heat ¢(f) is
given as

A(B) A(B)

Figure 1 displays this function for n = 3 as a surface over the 1 /B|J|-K /| J|-plane.
We note that its zero-temperature value c¢(00) = k is in agreement with the classical

" ' 2
o(9) = k8 2 (BF(B)) = kf? [* 0 _ (xo) ] @
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For high temperatures it vanishes as the inverse square of the temperature:

) _ (ﬁ 4 )%_+

5= (-2r0)
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Fig. 1. The specific heat (21) for n = 3 as a function of the dimensionless temperature kT/|J| :=
1/B|J| and the parameter K/|J|.

equipartition theorem. For low temperatures and K > 0 the specific heat c(B)
increases linearly:

(22)

(23)

For 0 < K/|J| < 14 the specific heat attains a maximum value in the temperature
range 0 < 1/6|J| £ 0.9. This maximum splits for K/|J| Z 15 into two maxima.
The global maximum of ¢(3) remains near 1/8|J| < 1 for large K values.

Finally, we remark that from the free energy (15) in combination with (16) or
(19) one can obtain!? further interesting properties of the system (6). Examples
are the two-spin correlation function

(24)
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here (-} denotes the canonical equilibrium expectation value with respect to Hamil-
tonian (6), the zero-field susceptibility

o
o 1- == F(f)
Xo(B) =8 (1 +2)(S;- Sj+—-—)) =p —“%I——'- , (25)
r=1 1+ —aw:—j- F(ﬂ)
and the mean lattice constant
_ 0
a(B) =L+ (gj41 - ¢;) =€~ m—Zgng(ﬁ)- (26)

A more detailed discussion (including applications and further thermostatic proper-
ties) of the system characterized by the Hamiltonian (6) will be given elsewhere.!2
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